社会现象。
不妨看这样的一个问题。在一个社交圈子里有n 个人,人与人之间有不同程度的关系。我们将这个关系网络对应到一个n 个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c 越小,表示两个人之间的关系越密切。
我们可以用对应结点之间的最短路长度来衡量两个人 s 和t 之间的关系密切程度,注意到最短路径上的其他结点为s 和t 的联系提供了某种便利,即这些结点对于s 和t 之间的联系有一定的重要程度。我们可以通过统计经过一个结点v的最短路径的数目来衡量该结点在社交网络中的重要程度。
考虑到两个结点 A 和B 之间可能会有多条最短路径。我们修改重要程度的定义如下:
令 Cs,t 表示从s 到t 的不同的最短路的数目,Cs,t(v)表示经过v 从s 到t 的最短路的数目;则定义
I(v)=∑Cs,t(v)/Cs,t (s≠v,t≠v)
为结点 v 在社交网络中的重要程度。
为了使 I(v)和Cs,t(v)有意义,我们规定需要处理的社交网络都是连通的无向图,即任意两个结点之间都有一条有限长度的最短路径。
现在给出这样一幅描述社交网络的加权无向图,请你求出每一个结点的重要程度。目。在无向图中,我们将所有结点从1 到n 进行编号。
接下来 m 行,每行用三个整数a, b, c 描述一条连接结点a 和b,权值为c 的无向边。注意任意两个结点之间最多有一条无向边相连,无向图中也不会出现自环(即不存在一条无向边的两个端点是相同的结点)。
4 4 1 2 1 2 3 1 3 4 1 4 1 1
1.000 1.000 1.000 1.000
对于 1 号结点而言,只有2 号到4 号结点和4 号到2 号结点的最短路经过1
号结点,而2 号结点和4 号结点之间的最短路又有2 条。因而根据定义,1 号结
点的重要程度计算为1/2+1/2=1。由于图的对称性,其他三个结点的重要程度也都
是1。
50%的数据中:n ≤ 10,m ≤ 45
100%的数据中:n ≤ 100,m ≤ 4 500,任意一条边的权值c 是正整数,满
足:1 ≤ c ≤ 1 000。
所有数据中保证给出的无向图连通,且任意两个结点之间的最短路径数目不
超过1010。
編號 | 身分 | 題目 | 主題 | 人氣 | 發表日期 |
沒有發現任何「解題報告」
|