行列式det(A) |
Background
行列式在數學中,是一個函數,其定義域為n × n的矩陣A,取值為一個純量,寫作det(A)或|A|。行列式可以看做是有向面積或體積的概念在一般的歐幾里得空間中的推廣。或者說,在 n 維歐幾里得空間中,行列式描述的是一個線性變換對「體積」所造成的影響。無論是在線性代數、多項式理論,還是在微積分學中(比如說換元積分法中),行列式作為基本的數學工具,都有著重要的應用。
行列式概念最早出現在解線性方程組的過程中。十七世紀晚期,關孝和與萊布尼茨的著作中已經使用行列式來確定線性方程組解的個數以及形式。十八世紀開始,行列式開始作為獨立的數學概念被研究。十九世紀以後,行列式理論進一步得到發展和完善。矩陣概念的引入使得更多有關行列式的性質被發現,行列式在許多領域都逐漸顯現出重要的意義和作用,出現了線性自同態和向量組的行列式的定義。
行列式的特性可以被概括為一個多次交替線性形式,這個本質使得行列式在歐幾里德空間中可以成為描述「體積」的函數。
by Wiki
輸入的每一行包含多筆測試。一個測試資料遞一行包含一個整數 N,1 < N < 11。接下來有 N 行,每行上有 N 個整數
Aij (-100 < Aij < 100) 。
2 3 4 1 2 3 -9 -18 -27 0 -5 -7 6 -1 3
2 144
編號 | 身分 | 題目 | 主題 | 人氣 | 發表日期 |
沒有發現任何「解題報告」
|