b141. NOIP2005 4.循环
標籤 :
通過比率 : 44人/79人 ( 56% ) [非即時]
評分方式:
Tolerant

最近更新 : 2014-11-01 01:39

內容
乐乐是一个聪明而又勤奋好学的孩子。他总喜欢探求事物的规律。一天,他突然对数的正整数次幂产生了兴趣。

众所周知,2的正整数次幂最后一位数总是不断的在重复2,4,8,6,2,4,8,6……我们说2的正整数次幂最后一位的循环长度是4(实际上4的倍数都可以说是循环长度,但我们只考虑最小的循环长度)。类似的,其余的数字的正整数次幂最后一位数也有类似的循环现象:


循环
循环长度

2
2、4、8、6
4

3
3、9、7、1
4

4
4、6
2

5
5
1

6
6
1

7
7、9、3、1
4

8
8、4、2、6
4

9
9、1
2


这时乐乐的问题就出来了:是不是只有最后一位才有这样的循环呢?对于一个整数n的正整数次幂来说,它的后k位是否会发生循环?如果循环的话,循环长度是多少呢?

注意:

1. 如果n的某个正整数次幂的位数不足k,那么不足的高位看做是0。

2. 如果循环长度是L,那么说明对于任意的正整数a,n的a次幂和a + L次幂的最后k位都相同。
輸入說明
每組输入只有一行,包含两个整数n(1 <= n < 10100)和k(1 <= k <= 100),n和k之间用一个空格隔开,表示要求n的正整数次幂的最后k位的循环长度。
輸出說明
每組输出包括一行,这一行只包含一个整数,表示循环长度。如果循环不存在,输出-1。
範例輸入 #1
32 2
範例輸出 #1
4
測資資訊:
記憶體限制: 512 MB
提示 :
对于30%的数据,k <= 4; 对于全部的数据,k <= 100。
標籤:
出處:
NOIP2005普及組

本題狀況 本題討論 排行

編號 身分 題目 主題 人氣 發表日期
沒有發現任何「解題報告」