对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程。
在可以选择的课程中,有2n节课程安排在n个时间段上。在第i (1 <= i <= n)个时间段上,两节内容相同的课程同时在不同的地点进行,其中,牛牛预先被安排在教室ci上课,而另一节课程在教室di进行。
在不提交任何申请的情况下,学生们需要按时间段的顺序依次完成所有的n节安排好的课程。如果学生想更换第i节课程的教室,则需要提出申请。若申请通过,学生就可以在第i个时间段去教室di上课,否则仍然在教室ci上课。
由于更换教室的需求太多,申请不一定能获得通过。通过计算,牛牛发现申请更换第i节课程的教室时,申请被通过的概率是一个已知的实数ki,并且对于不同课程的申请,被通过的概率是互相独立的。
学校规定,所有的申请只能在学期开始前一次性提交,并且每个人只能选择至多m节课程进行申请。这意味着牛牛必须一次性决定是否申请更换每节课的教室,而不能根据某些课程的申请结果来决定其他课程是否申请;牛牛可以申请自己最希望更换教室的m门课程,也可以 不用完 这m个申请的机会,甚至可以一门课程都不申请。
因为不同的课程可能会被安排在不同的教室进行,所以牛牛需要利用课间时间从一间教室赶到另一间教室。
牛牛所在的大学有v个教室,有e条道路。每条道路连接两间教室,并且是可以 双向通行 的。由于道路的长度和拥堵程度不同,通过不同的道路耗费的体力可能会有所不同。当第i (1<= i <= n-1)节课结束后,牛牛就会从这节课的教室出发,选择一条耗费体力最少的 路径 前往下一节课的教室。
现在牛牛想知道,申请哪几门课程可以使他因在教室间移动耗费的体力值的总和的 期望值 最小,请你帮他求出这个最小值。
第一行四个整数n, m, v, e。n表示这个学期内的时间段的数量;m表示牛牛最多可以申请更换多少节课程的教室;v表示牛牛学校里教室的数量;e表示牛牛的学校里道路的数量。
第二行n个正整数,第i (1 <= i<= n)个正整数表示ci,即第i个时间段牛牛被安排上课的教室;保证1 <= Ci <= v。
第三行n个正整数,第i (1<=i<=n)个正整数表示di,即第i个时间段另一间上同样课程的教室;保证1<=di<=v。
第四行n个实数,第i (1<=i<=n)个实数表示ki,即牛牛申请在第i个时间段更换教室获得通过的概率。保证0 <= ki <= 1。
接下来e行,每行三个正整数aj,bj,wj,表示有一条双向道路连接教室aj,bj,通过这条道路需要耗费的体力值是wj;保证1 <= aj, bj <= v, 1 <= wj <= 100。
保证 1 <= n <= 2000,0 <= m <= 2000, 1 <= v <= 300, 0 <= e <= 90000。
保证通过学校里的道路,从任何一间教室出发,都能到达其他所有的教室。
保证输入的实数最多包含3位小数。
输出一行,包含一个实数,四舍五入精确到小数点后 恰好2位 ,表示答案。你的输出必须和标准输出 完全一样 才算正确。
测试数据保证四舍五入后的答案和准确答案的差的绝对值不大于4 x 10^-3。(如果你不知道什么是浮点误差,这段话可以理解为:对于大多数的算法,你可以正常地使用浮点数类型而不用对它进行特殊的处理)
3 2 3 3 2 1 2 1 2 1 0.8 0.2 0.5 1 2 5 1 3 3 2 3 1
2.80
所有可行的申请方案和期望收益如下表:
申请更换教室的时间段 | 申请通过的时间段 | 出现的概率 | 耗费的体力值 | 耗费的体力值的期望 |
---|---|---|---|---|
无 | 无 | 1.0 | 8 | 8.0 |
1 | 1 | 0.8 | 4 | 4.8 |
无 | 0.2 | 8 | ||
2 | 2 | 0.2 | 0 | 6.4 |
无 | 0.8 | 8 | ||
3 | 3 | 0.5 | 4 | 6.0 |
无 | 0.5 | 8 | ||
1、2 | 1、2 | 0.16 | 4 | 4.48 |
1 | 0.64 | 4 | ||
2 | 0.04 | 0 | ||
无 | 0.16 | 8 | ||
1、3 | 1、3 | 0.4 | 0 | 2.8 |
1 | 0.4 | 4 | ||
3 | 0.1 | 4 | ||
无 | 0.1 | 8 | ||
2、3 | 2、3 | 0.1 | 4 | 5.2 |
2 | 0.1 | 0 | ||
3 | 0.4 | 4 | ||
无 | 0.4 | 8 |
【提示】
【子任务】
测试点 | n | m | v | 特殊性质1 | 特殊性质2 |
---|---|---|---|---|---|
1 | ≤1 | ≤1 | ≤300 | × | × |
2 | ≤2 | ≤0 | ≤20 | ||
3 | ≤1 | ≤100 | |||
4 | ≤2 | ≤300 | |||
5 | ≤3 | ≤0 | ≤20 | √ | √ |
6 | ≤1 | ≤100 | × | ||
7 | ≤2 | ≤300 | × | ||
8 | ≤10 | ≤0 | √ | √ | |
9 | ≤1 | ≤20 | × | ||
10 | ≤2 | ≤100 | × | ||
11 | ≤10 | ≤300 | √ | ||
12 | ≤20 | ≤0 | ≤20 | √ | × |
13 | ≤1 | ≤100 | × | ||
14 | ≤2 | ≤300 | √ | ||
15 | ≤20 | × | √ | ||
16 | ≤300 | ≤0 | ≤20 | × | |
17 | ≤1 | ≤100 | |||
18 | ≤2 | ≤300 | √ | √ | |
19 | ≤300 | × | |||
20 | ≤2000 | ≤0 | ≤20 | × | |
21 | ≤1 | ||||
22 | ≤2 | ≤100 | |||
23 | ≤2000 | ||||
24 | ≤300 | ||||
25 |
特殊性质1:图上任意两点 ai,bi (ai≠bi)间,存在一条耗费体力最少的路径只包含一条道路。
特殊性质2:对于所有的 1≤i≤n,ki=1。
編號 | 身分 | 題目 | 主題 | 人氣 | 發表日期 |
沒有發現任何「解題報告」
|