Kiana最近沉迷于一款神奇的游戏无法自拔。
简单来说,这款游戏是在一个平面上进行的。
有一架弹弓位于(0, 0)处,每次Kiana可以用它向第一象限发射一只红色的小鸟,小鸟们的飞行轨迹均为形如y = ax^2+ bx的曲线,其中a, b是Kiana指定的参数,且必须满足a < 0。
当小鸟落回地面(即x轴)时,它就会瞬间消失。
在游戏的某个关卡里,平面的第一象限中有n只绿色的小猪,其中第i只小猪所在的坐标为(xi, yi)。
如果某只小鸟的飞行轨迹经过了(xi, yi),那么第i只小猪就会被消灭掉,同时小鸟将会沿着原先的轨迹继续飞行;
如果一只小鸟的飞行轨迹没有经过(xi, yi),那么这只小鸟飞行的全过程就不会对第i只小猪产生任何影响。
例如,若两只小猪分别位于(1,3)和(3,3),Kiana可以选择发射一只飞行轨迹为 y = -x^2 + 4x的小鸟,这样两只小猪就会被这只小鸟一起消灭。
而这个游戏的目的,就是通过发射小鸟消灭所有的小猪。
这款神奇游戏的每个关卡对Kiana来说都很难,所以Kiana还输入了一些神秘的指令,使得自己能更轻松地完成这个游戏。这些指令将在【输入格式】中详述。
假设这款游戏一共有T个关卡,现在Kiana想知道,对于每一个关卡,至少需要发射多少只小鸟才能消灭所有的小猪。由于她不会算,所以希望由你告诉她。
第一行包含一个正整数T,表示游戏的关卡总数。
下面依次输入这T个关卡的信息。每个关卡第一行包含两个非负整数n,m,分别 表示该关卡中的小猪数量和Kiana输入的神秘指令类型。接下来的n行中,第i行包含 两个正实数xi, yi,表示第i只小猪坐标为(xi, yi)。数据保证同一个关卡中不存在两只坐标完全相同的小猪。
如果m = 0,表示Kiana输入了一个没有任何作用的指令。
如果m = 1,则这个关卡将会满足:至多用⌈n/3 + 1⌉只小鸟即可消灭所有小猪。
如果m = 2,则这个关卡将会满足:一定存在一种最优解,其中有一只小鸟消灭了至少⌊n/3⌋只小猪。
保证1<=n<=18,0<=m<=2,0<xi, yi<10,输入中的实数均保留到小数点后两位。
上文中,符号⌈c⌉和⌊c⌋分别表示对c向上取整和向下取整,例如:⌈2.1⌉ = ⌈2.9⌉ = ⌈3.0⌉ = ⌊3.0⌋ = ⌊3.1⌋ = ⌊3.9⌋ = 3。
对每个关卡依次输出一行答案。
输出的每一行包含一个正整数,表示相应的关卡中,消灭所有小猪最少需要的小鸟数量。
2 2 0 1.00 3.00 3.00 3.00 5 2 1.00 5.00 2.00 8.00 3.00 9.00 4.00 8.00 5.00 5.00 3 2 0 1.41 2.00 1.73 3.00 3 0 1.11 1.41 2.34 1.79 2.98 1.49 5 0 2.72 2.72 2.72 3.14 3.14 2.72 3.14 3.14 5.00 5.00 1 10 0 7.16 6.28 2.02 0.38 8.33 7.78 7.68 2.09 7.46 7.86 5.77 7.44 8.24 6.72 4.42 5.11 5.42 7.79 8.15 4.99
1 1 2 2 3 6
【样例1说明】
这组数据中一共有两个关卡。
第一个关卡与【问题描述】中的情形相同,2只小猪分别位于(1.00, 3.00)和 (3.00, 3.00),只需发射一只飞行轨迹为y = -x^2 + 4x的小鸟即可消灭它们。
第二个关卡中有5只小猪,但经过观察我们可以发现它们的坐标都在抛物线 y = -x^2 + 6x上,故Kiana只需要发射一只小鸟即可消灭所有小猪。
数据的一些特殊规定如下表:
测试点编号 | n">n | m">m | T">T |
---|---|---|---|
1 | ≤2">≤2 | =0">=0 | ≤10">≤10 |
2 | ≤30">≤30 | ||
3 | ≤3">≤3 | ≤10">≤10 | |
4 | ≤30">≤30 | ||
5 | ≤4">≤4 | ≤10">≤10 | |
6 | ≤30">≤30 | ||
7 | ≤5">≤5 | ≤10">≤10 | |
8 | ≤6">≤6 | ||
9 | ≤7">≤7 | ||
10 | ≤8">≤8 | ||
11 | ≤9">≤9 | ≤30">≤30 | |
12 | ≤10">≤10 | ||
13 | ≤12">≤12 | =1">=1 | |
14 | =2">=2 | ||
15 | ≤15">≤15 | =0">=0 | ≤15">≤15 |
16 | =1">=1 | ||
17 | =2">=2 | ||
18 | ≤18">≤18 | =0">=0 | ≤5">≤5 |
19 | =1">=1 | ||
20 | =2">=2 |
編號 | 身分 | 題目 | 主題 | 人氣 | 發表日期 |
沒有發現任何「解題報告」
|