d779. NOIP2009 3.最优贸易
標籤 :
通過比率 : 44人/53人 ( 83% ) [非即時]
評分方式:
Tolerant

最近更新 : 2014-11-01 03:05

內容
     C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市。任意两个城市之间最多只有一条道路直接相连。这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道路在统计条数时也计为 1 条。 
     C 国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价格不一定相同。但是,同一种商品在同一个城市的买入价和卖出价始终是相同的。 
     商人阿龙来到 C 国旅游。当他得知同一种商品在不同城市的价格可能会不同这一信息之后,便决定在旅游的同时,利用商品在不同城市中的差价赚回一点旅费。设 C 国 n 个城市的标号从 1~ n,阿龙决定从 1 号城市出发,并最终在 n 号城市结束自己的旅行。在旅游的过程中,任何城市可以重复经过多次,但不要求经过所有 n 个城市。阿龙通过这样的贸易方式赚取旅费:他会选择一个经过的城市买入他最喜欢的商品——水晶球,并在之后经过的另一个城市卖出这个水晶球,用赚取的差价当做旅费。由于阿龙主要是来 C 国旅游,他决定这个贸易只进行最多一次,当然,在赚不到差价的情况下他就无需进行贸易。 
     假设 C 国有 5 个大城市,城市的编号和道路连接情况如下图,单向箭头表示这条道路为单向通行,双向箭头表示这条道路为双向通行。 

     假设 1~n 号城市的水晶球价格分别为 4,3,5,6,1。 
     阿龙可以选择如下一条线路:1->2->3->5,并在 2 号城市以 3 的价格买入水晶球,在 3号城市以 5的价格卖出水晶球,赚取的旅费数为 2。 
     阿龙也可以选择如下一条线路 1->4->5->4->5,并在第 1 次到达 5 号城市时以 1 的价格买入水晶球,在第 2 次到达 4 号城市时以 6 的价格卖出水晶球,赚取的旅费数为 5。 

     现在给出 n个城市的水晶球价格,m条道路的信息(每条道路所连接的两个城市的编号以及该条道路的通行情况) 。请你告诉阿龙,他最多能赚取多少旅费。
輸入說明
第一行包含 2 个正整数 n 和 m,中间用一个空格隔开,分别表示城市的数目和道路的数目。 
第二行 n 个正整数,每两个整数之间用一个空格隔开,按标号顺序分别表示这 n 个城市的商品价格。 
接下来 m行, 每行有 3 个正整数, x, y, z, 每两个整数之间用一个空格隔开。 如果 z=1,表示这条道路是城市 x到城市 y之间的单向道路;如果 z=2,表示这条道路为城市 x 和城市y之间的双向道路。
輸出說明
共1 行, 包含 1 个整数, 表示最多能赚取的旅费。 如果没有进行贸易,则输出 0。
範例輸入 #1
5 5
4 3 5 6 1
1 2 1
1 4 1
2 3 2
3 5 1
4 5 2
範例輸出 #1
5
測資資訊:
記憶體限制: 512 MB
提示 :
输入数据保证 1 号城市可以到达 n号城市。 
对于 10%的数据,1≤n≤6。 
对于 30%的数据,1≤n≤100。 
对于 50%的数据,不存在一条旅游路线,可以从一个城市出发,再回到这个城市。 
对于 100%的数据,1≤n≤100000,1≤m≤500000,1≤x,y≤n,1≤z≤2,1≤各城市水晶球价格≤100。
標籤:
出處:
NOIP2009提高组第三题 [管理者: liouzhou_101 (王启圣) ]

本題狀況 本題討論 排行

編號 身分 題目 主題 人氣 發表日期
39580 qerpzzea@gma ... (賽希爾 cecill(陳宥穎)) d779
分層圖最短路
117 2024-03-08 12:27