給定任何正整數,如果我們更改他數字的排列,獲得的新數字與原數字之間的必為9的倍數。
例如:給定的數字是123,我們可以重新排列數字以獲得321。兩者之差 = 321 - 123 = 198,而它是9的倍數(198 = 9×22)。
我們可以很容易地證明這一事實,但是由於我們不是數學競賽,因此你只用在程式的幫助下說明這一事實。
輸入每一行為一個正整數n (n ≤ 2000000000)。
請透過重新排列n的數字而形成兩個整數a和b,使得a-b為最大。
a和b不應有前導零。
對於每行輸入
輸出"a - b = a-b = 9 * x"
具體格式請參考範例輸出。
123 2468
321 - 123 = 198 = 9 * 22 8642 - 2468 = 6174 = 9 * 686
編號 | 身分 | 題目 | 主題 | 人氣 | 發表日期 |
沒有發現任何「解題報告」
|